Kézi laminálás:
A technológia leírása:
A szerszámba behelyezzük az első, száraz erősítőréteget. Ha előzőleg gelcoattal dolgoztunk, erre az erősítőréteg jól tapad, ha nem, akkor a szerszám felületére először egy vékony gyanta réteget hordjunk fel. Az erősítőstruktúra szálait közzé a gyantát kézi erővel, ecset és/vagy henger (Teddy) segítségével juttatjuk. Az előre megtervezett rétegfelépítésnek megfelelően, behelyezzük a következő erősítőréteget. A cél, hogy a száraz erősítőréteget előbb az alatt lévő gyantával nedvesítsük át, majd erre hordjunk fel egy vékony gyanta réteget, így elkerülhető a buborék (zárvány) képződés. A művelet végén légtelenítő hengerrel hengereljük át a teljes felületet. A termék térhálósodása normál szobahőmérsékleten történik. Választható anyagok: Gyanta: bármilyen epoxi, poliészter, vinilészter, fenol-gyanták. Szálerősítés: szőtt, nem szőtt, kötött struktúrák, minden száltípus (a vastag aramid szálak nehezen nedvesíthetők ezzel az eljárással).
Maganyagok: bármilyen használható.
Előnyök:
• Gyakran használt, elterjedt technológia.
• Egyszerű, könnyen elsajátítható eljárás.
• Alacsony eszköz és szerszám költségű (ha szobahőmérsékleten térhálósodó gyantát használunk).
• Széles a felhasználható alapanyagok köre.
• Magasabb száltartalom és hosszabb szálak, mint a szóró eljárásnál.
Hátrányok:
• A gyanta komponensek aránya, a laminátum száltartalma és minősége erősen függ a dolgozó gyakorlatától. A száltartalom növelésével növekszik annak a kockázata, hogy zárvány keletkezik a termékben.
• A kézi lamináláshoz használt alacsonyabb molekulasúlyú gyanták környezet és egészségvédelmi szempontból ártalmasabbak (könnyebben áthatolnak a ruházaton stb.).
• Az eljárás során nagy a sztirol emisszió, az előírt sztirol levegőkoncentrációt csak költséges levegőtisztító berendezések alkalmazásával lehet biztosítani.
• A kézi lamináláshoz általában a gyanták túl alacsony viszkozitásúak, sztirollal vagy más oldószerrel tehető könnyebben felhordhatóvá, azonban ez negatívan befolyásolhatja a termék végső termikus/mechanikus tulajdonságait.
Jellemző felhasználás:
Szabványos szél turbina lapátok, hajók, építészeti elemek.
Pre-preg feldolgozás:
A technológia leírása: Ehhez az eljáráshoz elő-impregnált erősítő struktúrát – prepreget alkalmaznak. A prepreg hő és nyomás alatt, elő-katalizált gyantával átitatott szövet vagy nem szőtt erősítő szerkezet, amelyet ha a gyártó által megadott alacsony hőmérsékleten tárolnak, hetekig sőt hónapokig megőrzi eredeti tulajdonságait. A prepreget kézzel vagy géppel fekteti a szerszámba. Ez után az eljárás hasonló a vákuumzsákos technológiához, azzal a különbséggel, hogy a térhálósítás során, a prepreggyártó által megadott hőprofilnak megfelelően hőkezelik a terméket (melegítés, hőn tartás, hűtés). Ha nyomás alkalmazása is szükséges, ez esetben a térhálósítás autoklávban történik. Választható anyagok: Gyanta: általában epoxi, poliészter, fenolgyanták és olyan speciális gyanták amelyek magas hőmérsékletet igényelnek a térhálósítás során. Szálerősítés: bármilyen Maganyag: bármilyen maganyag használható, amely kibírja a térhálósítás során alkalmazott magas hőmérsékletet.
Előnyök:
• Magas száltartalom, pontosan beállított gyanta/katalizátor arány, egyenletes termék minőség
• Környezetbarát, tiszta technológia (minimális káros anyag emisszió, minimális hulladék)
• A gyantát speciálisan a termék céloknak megfelelően fejlesztik, nincs viszkozitás korlát
• Automatizálható technológia
Hátrányok:
• Magasabb alapanyagköltségek
• Általában autokláv szükséges
• Csak az egyik felület lesz teljesen sima
• Nagyon bonyolult szerszám geometria esetén nem impregnált területek előfordulhatnak
Jellemző felhasználás:
Kisebb méretű hajók, teher- és gépjárműalkatrészek gyártása.
Pulltrúzió
Leírás:
A szálakat gyantafürdőn át egy fűtött, sajtoló szerszámba vezetik. A sajtoló szerszám segítségével beállítható a pultrudált termék száltartalma, és ez adja a térhálósodott termék végső alakját. Ez az eljárás folyamatos, a technológiai sor végén automatikusan a megfelelő hosszra vágják a terméket. Lehetőség van arra, hogy a szálak bizonyos struktúrában (fonatolás) helyezkedjenek el a pultrudált termékben.
Választható alapanyagok:
Gyanta:
általában epoxi, poliészter, vinilészter, fenol gyanta
Szálerősítés:
bármely, szál formában.
Maganyag:
általában nem alkalmaznak.
Előnyök:
• Ez egy nagyon gyors és gazdaságos eljárás, mind a szálak átitatásában, mind a térhálósítás tekintetében
• A termék száltartalma pontosan beállítható
• Az alapanyag költségek a szálak vonatkozásában alacsonyak, a gyári kiszerelésről direkt módon felhasználhatók
• Magas száltartalmat lehet elérni, jó mechanikai tulajdonságú termék gyártható
• Mivel a szálak gyantával történő átitatása zárt térben történik, alacsony a sztirol emisszió
Hátrányok:
• Csak állandó vagy közel állandó keresztmetszetű termékek gyártására
• Az előállítás költségét megnöveli a szerszám fűtése
Jellemző felhasználás:
Tartók és gerendák tetőszerkezetekhez, hidakhoz, létrákhoz, vázszerkezetek.
RTM
Leírás:
Az erősítőrétegeket szárazon helyezik el az alsó szerszám félbe. Bonyolult szerszám geometria esetén előformázzák és/vagy ragasztóanyaggal egymáshoz rögzítik a rétegeket, így az sokkal könnyebben kezelhető szerszámzáráskor. A felső szerszám felet mechanikusan vagy nyomás segítségével rögzítik az alsóhoz, majd a szerszámüregbe nyomás alatt bejuttatják a gyantát. Az eljárás során a szerszám üregben lévő levegő eltávolítására vákuum elszívás is alkalmazható – ez a VARI (Vacuum Assisted Resin Injection) eljárás. Az injektálás után a térhálósodás normál szobahőmérsékleten zajlik, de igény szerint a szerszám temperálásával is történhet.
Választható alapanyagok:
Gyanta:
általában epoxi, poliészter, vinilészter és fenolgyanták. De alkalmazható olyan gyanta is, amely magas térhálósítási hőmérsékletet igényel.
Szálerősítés:
bármilyen
Maganyag:
a méhsejtes szerkezet kivételével bármely alkalmazható, a méhsejtes maganyagok esetében a nyomás alatt haladó gyanta tönkreteheti a cellás szerkezetet.
Előnyök:
• Magas száltartalom, egyenletes falvastagság és minőség
• Alacsony sztirol emisszió
• Környezetbarát technológia (minimális káros anyag emisszió, minimális hulladék)
• A kísérleti, laboratóriumi méretek gyártására alkalmas
• A termék mindkét felülete jó minőségű
Hátrányok:
• Magas szerszám költségek
• Inkább kis méretű termékeknél alkalmazzák, nagy méretű termékek esetében a szerszám mozgatás problémás
• Nagyon bonyolult szerszám geometria esetén nem impregnált területek előfordulhatnak
Jellemző felhasználás:
Kisebb méretű repülő-, hajó- és autóalkatrészek gyártása.
Szálszórás
Leírás:
Az erősítő szálat a kézi pisztoly vágja a beállított hosszúságra. A nyomás alatt bevezetett gyanta a pisztolyba keveredik a katalizátorral. A pisztolyból kilépő, egyenletes sugárban szétterülő gyantára ráül a vágott erősítő szál, és így kerül direkt módon a szerszámra. A kitérhálósodás normál szobahőmérsékleten történik.
Választható alapanyagok:
Gyanta:
lsősorban poliésztergyanták
Szálerősítés:
csak üvegszál (roving)
Maganyag:
csak külön, két szórási eljárás között építhető be
Előnyök:
• Több éve alkalmazott, elterjedt eljárás
• Alacsony raktározási költségek
• Alacsony szerszámköltség
Hátrányok:
• A laminátumok gyanta dúsak és ez által túl súlyosak lehetnek
• Az alacsony száltartalom miatt a termékek mechanikai tulajdonságai korlátozottak
• A szórásos eljáráshoz alacsony viszkozitású gyanta szükséges, ez negatívan befolyásolhatja a termék mechanikus/termikus tulajdonságait
• Az alacsony viszkozitású gyanták kis molekulasúlyúk miatt veszélyesebbek a környezetre és az egészségre (pl. könnyebben áthatolnak a védő ruházaton)
• Az munkatér levegőjének sztirol koncentrációját az eljárás során nehéz és költséges az előírt értékek alatt tartani
Jellemző felhasználás:
Kis igénybevételnek kitett szerkezeti elemek: lakóautó panelek, teherautó burkolati panelek, fürdőkádak, zuhanytálcák.
Száltkercselés
Leírás:
Ezt az eljárást elsősorban üreges, kör vagy ovális keresztmetszetű termékek illetve elemek gyártásakor alkalmazzák. A szálakat egy gyantafürdőn keresztül vezetik. A tekercselési szöget a szálakat vezető, alternáló mozgást végző kocsi és a tüske forgási sebességének iránya határozza meg.
Választható alapanyagok:
Gyanta:
bármely epoxi, poliészter, vinilészter, fenol gyanta
Szálerősítés:
bármely, általában szál formában. Ritkábban alkalmaznak keskeny szőtt szalagokat is.
Maganyag:
bármely, bár általában ezek a termékek tipikusan egy rétegűek.
Előnyök:
• Nagyon gyors és gazdaságos eljárás
• A gyanta tartalmat jól lehet szabályozni a gyantafürdő utáni szabályozó hengerek segítségével
• Mivel az erősítő anyag többnyire szálformájú, alacsonyak az alapanyag költségek
• A laminátum mechanikai tulajdonságai az igénybevételnek megfelelően tervezhetők a tekercselési szög változtatásával
Hátrányok:
• Az eljárás csak domború formájú elemek gyártására alkalmas
• A szálakat nem lehet a termék teljes hosszában egyenletes vastagságban elhelyezni
• A forgó tüske költsége nagy méretű termékek esetében magas lehet
• A termék felülete esztétikai szempontból nem vonzó, utólagos megmunkálást igényelhet
• Az eljárás során alacsony viszkozitású gyantát kell alkalmazni, ez negatívan befolyásolhatja a termék termikus/mechanikai tulajdonságait
Jellemző felhasználás:
Vegyi anyag tárolására alkalmas tartályok, gáztartályok.
Vákuumzsákos eljárás:
Leírás:
Az eljárás hasonló a kézi lamináláshoz, azonban ebben az esetben a termék térhálósodása nyomás alatt történik, így magasabb száltartalom, jobb minőség – nincsenek légzárványok,- érhető el. A tépőszövet szerepe, hogy a laminátum feletti rétegek ne kössenek a termékhez, e fölött helyezkedik el a gyantavezető háló és a fölösleges gyantát felszívó nem szőtt réteg, majd a vákuumfólia, amelyet légmentesen a kétoldalú ragasztó rögzít körbe a munkafelülethez. A vákuumfólia alatti levegőt a vákuum szivattyú szívja ki a rendszerből, -0,8 bar körüli nyomás alatt tartva a laminátumot a térhálósodás ideje alatt.
Választható alapanyagok:
Gyanta:
elsősorban epoxi és fenolgyanták. A poliészter és vinilészter gyanták esetében a vákuum miatt a rendszerből eltávozó nagy mennyiségű sztirol negatívan befolyásolhatja a termék tulajdonságait.
Szálerősítés:
számos, egyébként nehezen nedvesedő, vastag erősítő szövet alkalmazható Maganyag:
bármilyen, lehetőleg nyomás álló
Előnyök:
Magasabb száltartalom mint a kézi laminálásnál Alacsony sztirol emisszió Az erősítő struktúrák jobban és egyenletesebben átitatódnak gyantával Reprodukálható, egyenletes termék minőség
Hátrányok:
Extra költségek, a több, csak egyszer felhasználható réteg miatt Magasabb dolgozói képzettség szükséges
Jellemző felhasználás:
Széle körben használják, hajó és versenyautó elemek gyártásához.
Vákuuminfúzió:
Leírás:
Az erősítőrétegeket szárazon helyezik el a szerszámba, amelyet előzőleg formaleválasztóval kezeltek. Bonyolult szerszám geometria esetén előformázzák és/vagy ragasztóanyaggal egymáshoz rögzítik a rétegeket, így az sokkal könnyebben kezelhető. Az így elhelyezett rétegekre egy u.n. tépőszövetet helyeznek, ez biztosítja, hogy az e fölött elhelyezkedő rétegek nem kötnek a termékhez. A tépőszövet fölé gyantavezető háló is helyezhető, ez megkönnyíti a gyanta haladását. Erre kerül a vákuumfólia, amelyet kétoldalú ragasztószalaggal rögzítenek a szerszám felületéhez. Két csatlakozón keresztül biztosított – egyrészt a levegő kiszívása a munkatérből egy vákuum szivattyú segítségével, – másrészt a gyanta adagolása, amely a vákuum szívó hatására átnedvesítve az erősítőrétegeket, halad a szívócsonk felé. Tanácsos gyantaadagoló spirált alkalmazni, amelyet a vákuumfólia alatt a szerszám szélén körbevezetve, megkönnyíti a gyanta bejutását – ebben az esetben a szívó csonkot a termék közepén helyezik el. Nagy illetve bonyolult geometriájú termék esetén több adagoló csonkot alkalmaznak.
Választható alapanyagok:
Gyanta: általában epoxi, poliészter, és vinilészter.
Szálerősítés: bármilyen
Maganyag: a méhsejtes szerkezet kivételével bármely alkalmazható, a méhsejtes maganyagok esetében a nyomás alatt haladó gyanta tönkreteheti a cellás szerkezetet. Ajánlott olyan maganyagok alkalmazása, amelyek nem nyomás érzékenyek és egyben gyanta vezető tulajdonságaik is vannak.
Előnyök:
• Magas száltartalom, egyenletes falvastagság és minőség
• Alacsony sztirol emisszió
• Környezetbarát technológia (minimális káros anyag emisszió, minimális hulladék)
• Bármilyen méret gyártható
• Az RTM-hez képest kisebb szerszám költség
Hátrányok:
• Magas képzettséget igényel
• Csak alacsony viszkozitású gyanták alkalmazhatók
• Csak az egyik felület lesz teljesen sima
• Nagyon bonyolult szerszám geometria esetén nem impregnált területek előfordulhatnak
Jellemző felhasználás:
Kisebb méretű hajók, teher- és gépjárműalkatrészek gyártása.[/vc_column_text][/vc_column][/vc_row]